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Genetic and environmental variation
impact transferability of polygenic risk scores
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Even when polygenic risk scores (PRSs) are trained in African ancestral populations, Kamiza and colleagues
showed that genetic and environmental variation within sub-Saharan African populations impacts prediction
performance, highlighting the challenges of clinical implementation of PRSs for risk assessment.
Common DNA variation across hundreds

of thousands of individuals has been

used in genome-wide association studies

(GWASs) to identify thousands of associ-

ations between genetic variants and com-

plex traits. FromGWASs, we have learned

that the genetic architectures for most

common, complex diseases are poly-

genic, meaning that many DNA variants

each additively play a small role in deter-

mining phenotype variability.1 Polygenic

risk scores (PRSs) are the sum of GWASs

effect sizes multiplied by an individual’s

allele dosages. It may be possible to pre-

dict disease susceptibility with PRSs.2

However, most GWASs to date have

been performed in European ancestries,

and PRSs show reduced prediction per-

formance when transferred to individuals

of other ancestries.3 Therefore, clinical

implementation of PRSs could widen

health disparities between European and

non-European populations.

When using genotypes to classify and

cluster individuals, human geneticists

commonly refer to groups by discrete

continental ancestry groups, even though

genetic ancestry is multi-dimensional and

continuous. All individuals have multiple

ancestries depending on the timescale;

thus, as recently recommended, we

prefer to use the plural ‘‘ancestries.’’4

Continental ancestries do not accurately

represent human genetic diversity, and

referring to populations by continental

ancestry in the singular risks supporting

the misconception of race as a biological

attribute.4 As such, the genetic ancestries

of individuals within GWASs are an impor-

tant factor when building and interpretat-
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ing PRSs. Furthermore, distinct complex

traits have different heritability estimates,

which quantify how much of the trait vari-

ability is due to genetic differences.

Therefore, PRS accuracy, transferability,

and clinical applicability will depend on

the phenotype of interest.5 To demon-

strate these challenges, Kamiza and col-

leagues6 compared PRS accuracy and

transferability in two sub-Saharan African

populations using scores estimated from

African American, European, or multian-

cestry (African American, European, and

Hispanic) cohorts for four lipid traits:

low-density lipoprotein cholesterol, high-

density lipoprotein cholesterol, triglycer-

ides, and total cholesterol. According to

their findings, PRS performance was

greater in three out of four lipid traits in

the South African Zulu cohort when using

scores derived from African American

GWAS summary statistics, which high-

lights howancestral differences can affect

PRS performance. However, the authors

noted that African American-derived

PRSs did not perform as well in the Ugan-

dan cohort as they had the best perfor-

mance in only one out of the four lipid

traits tested. More importantly, prediction

performance in the Ugandan cohort was

lower than in South African Zulu with

PRS models tested from all ancestries.

We do not expect performance of PRSs

trained in African American populations to

perform the same in South African Zulu

and Uganda populations, given the dis-

tance between these populations in geno-

type principal component space.6 African

American populations often comprise indi-

viduals with varying proportions of West
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West African Yoruba and Mende popula-

tions cluster closer to the South African

Zulu than the Ugandan population dis-

cussed in Kamiza et al.6 Given that African

populationsharbor thehighest levelsofge-

netic diversity among all populations in the

world,7 it is not surprising thatPRSscannot

be easily transferred between them.

Indeed, variants’ effect sizes obtained

from one African population might not

accurately work in PRS assessment for

other populations of the same geographic

region, given the high levels of intra-conti-

nental genetic diversity in Africa.8

In addition to genetic factors, we must

be mindful of other factors that can affect

PRS transferability (Figure 1). Environ-

mental factors and other characteristics,

such as age and gender, have been

shown to affect PRS prediction accuracy

even within ancestral groups, where vari-

ation due to genetic factors such as link-

age disequilibrium (LD) and allele fre-

quency has been minimized.9 In their

work, Kamiza et al.6 postulated that, in

addition to allele frequency differences,

genetic interactions with living conditions

(urban versus rural environments), age,

and BMI also limited the PRS transfer-

ability in sub-Saharan Africa populations.

To realize the promise of precision

medicine, how can we work toward a

more inclusive and accurate applicability

of PRSs? Given the current sampling

bias in GWASs, it is imperative to increase

diverse ancestral representation in future

studies, which will not only contribute to

potentially reducing health disparities,

but also more immediately improve
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Figure 1. Factors that influence the transferability of polygenic risk scores (PRSs) between populations
Genetic factors, including differences in linkage disequilibrium patterns and minor allele frequencies and their interactions with environmental factors like urban
versus rural living, differences in diet and exercise, and differences in age and gender may affect PRS transferability. Also, how the phenotypewasmeasuredmay
attenuate PRS transferability. Created with BioRender.com.
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fine-mapping methods that identify which

DNA variants are likely to cause complex

traits.10 Because allele frequencies and

LD patterns vary between populations

that have been geographically and cultur-

ally separated, combining information

across populations increases fine-map-

ping resolution through harnessing these

differences in LD and increases power

through larger sample size. Fine-mapping

across ancestries will lead to better reso-

lution when causal variants are shared

across ancestries, which can only be

true when variants are present in all an-

cestries examined.10 Since we know

some genetic variation is unique to partic-

ular ancestries at appreciable frequency,

a combination of cross-ancestral and

ancestral-matched fine-mapping may be

necessary to optimize PRS performance.

Kamiza et al.6 elegantly demonstrate the

challenges of implementing precision

medicine equitably, and more studies

like it, where the primary authors have pri-

mary appointments in Africa, should be
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funded to support this goal of diversifying

GWASs.

Addressing transferability challenges

and working toward overcoming them is

the only way to ensure that PRSs can be

properly implemented for clinical use

without increasing health disparities.

While evaluating disease risk through

PRSs seems promising, especially for

the most heritable traits, clinicians should

also be aware of the wide range of genetic

and environmental factors that can influ-

ence PRS performance. PRSs should not

substitute for conventional clinical factors

but rather could become another tool that

clinicians use to evaluate disease risk.
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